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Several methods for realizing erasure declaring Viterbi decoders for the (7, 1/2) NASA

code are discussed. Only bit oriented algorithms are considered. When such decoders are

used in a concatenated system with a (255,223) Reed-Solomon decoder, improvements

on the probability of word error of at most 0.1 dB were obtained.

I. Introduction

Reliable deep space communication can be realized with

concatenated coding systems based on an inner convolutional

code and an outer Reed-Solomon code. A (7, 1/2) inner con-

volutional code and an 8-bit (255,223) outer Reed-Solomon

code are used in NASA's Voyager mission and as an inter-

national coding standard.

This Reed-Solomon code can correct any word such that

2e +E < 2t, where e is the number of symbol errors in the

word, E the number of erasures, and 2t = 32 the number of

parity symbols. While Reed-Solomon decoders which can

correct erasures can be easily implemented (Ref. 1), methods

for estimating symbol quality and criteria for declaring symbol

erasures are open to discussion.

There are two distinct classes of methods: one extracts

quality information from the Viterbi decoder, the other

examines adjacent symbols of interleaved Reed-Solomon

words and erases symbols next to incorrect symbols. Both

these classes of methods have been considered in Ref. 2. We

will concentrate on further variations of the first class methods,

which give better results than those reported in Ref. 2, and

comparable results to methods belonging to the second class.

II. Reed-Solomon Code Performance

Our (255,223) Reed-Solomon code over GF(2 s) has a word

error probability given by Ref. 3 :

i=O j=2(t-i)+l

j_O

ap i si (1 - p - s) n-i-i (1)

where

nt

a = i!jt(n-i-j)t

and n = 255; p is the symbol error rate at the Reed-Solomon

decoder input; and s is the symbol erasure rate. The only

ingredients needed to compute the performance of the con-

catenated system are therefore p and s, which are measured at

the output of a software simulated Viterbi decoder, driven by

convolutionally encoded data in additive Gaussian noise. The

values of E b/N O shown in this report have been increased by

0.58 dB to take into account the Reed-Solomon code rate.

These values represent the correct SNR of the concatenated

channel.
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III. Erasure Declaring Viterbi Decoders

The general problem is that of modifying the Viterbi algo-

rithm so that an estimate on the quality of decoded bits or

symbols (8 bits in our case) can be provided.

Theoretically we should be able to compute the a posteriori

probability for each bit or symbol and then compare it to a

threshold to declare erasures. Since the Reed-Solomon decoder

operates on symbols, we are ultimately interested in the

a posteriori symbol probability. Lee (Ref. 4) devised a decod-

ing algorithm called real-time minimal byte error probability

(RTMBEP) decoder, which actually provides the a posteriori

symbol probability, but is unfortunately too complex to

implement. A similar MAP bit decoding algorithm has been

proposed by P. L. McAdam (Ref. 5), but suffers from similar

implementation complexity problems.

Byte-oriented decoders should offer better erasure informa-

tion on Reed-Solomon symbols, but due to their complexity

we restrict ourselves to conventional bit-oriented Viterbi

decoders.

Several modified Viterbi algorithms will be described as

follows.

MethodA. Extraction of quality information for Viterbi

decoded bits from the rate of metric renormalization has been

considered in Ref. 2, and will not be repeated here. This

method's performance is severely limited by the fact that the

renormalization rate cannot resolve precisely enough in time

which bits are less reliable.

MethodB. The conventional Viterbi algorithm searches all

possible code sequences (paths) and finds the most likely

transmitted sequence. Accumulated metrics can be viewed as

distances between surviving paths and the received sequence,

where the closest path has metric normalized to zero and all

other paths have some positive metric. These metrics do not

contain enough information to reconstruct the a posteriori

probabilities of paths, since some paths are pruned at each

stage and their effect is thereafter ignored, together with the

probabilities of all the paths that could have departed from

them. Yet the accumulated metrics do contain "some" infor-

mation about the reliability of each surviving path. Typically

the metric values will be spread over a wide range of positive

values up to approximately 2(K - 1) (Ref. 6), where K is the

constraint length of the code, if SNR >> 1, while they will

tend to accumulate around zero if SNR is low. Therefore the

reliability of a chosen path (zero metric) can be estimated

according to the spread of the metrics.

Another basic problem is that we are interested in the

quality of a decoded bit and not in that of an entire path.

Different paths may or may not yield identical decoded bits.

Once the quality of a bit has been decided, we will declare

erasure by comparing it with a threshold. Ultimately, we will

have to decide on symbol (byte) erasures, which can be

declared if one or more bits are erased in the symbol. Although

this study is limited to bit-oriented Viterbi decoders, symbol

erasure criteria based on multiple bits erasures or multiple bit

cumulative quality have been tested. No measurable improve-

ments were found as compared to declaring symbol erasure

based on a single bit erasure in the symbol.

Let mj be the accumulated metric of state j at a given

time t; bj E(+I,-1) be the information bit belonging to the
surviving sequence into state j at time t - r; and j* be the state

such that mj* = 0, i.e., the state chosen as most likely at

time t, as shown in Fig. 1. Then bj* will be the decoded bit at

time t.

In a Viterbi decoder with M---2 K-1 states, Method B

forms the sum,

M-I

B = _ bj, bjE(-1,+l)

/=o

and then declares erasure if Bb/* < O. This corresponds to a

simple majority rule, where an erasure is declared if less than

half of the b� agree with b/*.

Method C. Let

= Max {m.}mmax
/

and mj = mma x - rnj ,/= 0 ..... M - 1. This method definesB

as

M-1

/=0

and declares erasure if

M-1

1 m'/
j=O

This corresponds to a weighted majority rule, where a higher

weight is assigned to more reliable paths.
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MethodD. This method (proposed by D. Divsalar) is sub-

stantially different from all others. It stores survivors as strings

of symbols from a ternary alphabet (+1, -1, E), where E repre-

sents erasure and bj _(+1, -1, E). An erasure is stored when
the relative difference of the two competing accumulated
metrics is less than a threshold T. Let these two metrics be

denoted by m(a) and m} b), where

mj = Min {m/(a), m1(.b)}
/

then an erasure is stored if

[m_a) - m(]b) l < T

m(]a) + m}b)

where T is small constant. An erasure is declared if bj* = E.

Method E. This method defines B as

M-1
_m.

B= E e Ibj
j=0

and declares erasure if

M-I

Bb/o < r _] e -'nj,
j=O

where T is a threshold value. This corresponds to a nonlinearly

weighted majority rule.

Method F. Let Jl and Jo be two sets of values of/" such that

bj = 1 and bj = 0, respectively. Then, this method defines B 1

and B o as

B 1 = y_ e -mj

JEJ 1

Bo = E e-mj

/_Jo

and declares erasure if

which is equivalent to a log-likelihood ratio test.

IV. Results and Conclusion

All the above methods have been tested extensively by sim-

ulation, for various threshold values. Thresholds showed a

mild dependency on Eb/No, and have been optimized by
repeated trials.

Symbols containing at least one reliable bit have been

erased. Erasing only symbols with at least two unreliable bits

has been tried and proved inferior.

Among all methods described, Method F performed con-

sistently, though slightly, better than any other. The superior-

ity of Method F is due to the fact that this method yields the

closest possible approximation of true a posteriori probabili-
ties, based on the Viterbi algorithm. The performance of this

method in terms of probability of word error at the output of

Reed-Solomon decoder (Eq. [1])vs. concatenated Eb/N o is
shown in Fig. 2, where the performance of the usual (no

erasure) system is also shown for comparison. The curve

denoted as "lower bound" is the performance of an hypo-

thetical system, where a "genie" knows exactly all symbols

in error, which are then erased. 1 Aside from the lower bound,

the two sets of curves in Fig. 2 represent two different trunca-

tion lengths L of survivors in the Viterbi decoder.

These simulation results indicate that an improvement of

approximately 0.1 dB can be obtained at Pw = 10-s by an
erasure declaring Viterbi decoder, based on Method F, if

L = 32 bits. This result compares favorably with that obtained

in Ref. 2. However, the improvement becomes negligible if the

truncation length is increased to 64 bits.

These results seem to suggest that the additional gain avail-

able may be achievable only with the more complex, symbol

oriented, algorithms based on true a posteriori symbol prob-
abilities.

1This method was devised by L. Deutsch, and reported in JPL IOM

331-83-132A (internal document), by L. Swanson, Jet Propulsion

Laboratory, Pasadena, Calif., April 12, 1983.
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Fig. 1. Example of surviving sequences at time t

J

_j*

2 K-1 - 1

2
E
O
o3
E:
Lu

a

>.-
I..-

..J

O
Iz:

t0-1 I I

10-2

10-3

10 -4

i0-5

10-6

10-7

ERRORS ONLY i

AND

ERASURES 1

AND tERASURES

OUND

L = 64 bits

L = 32 bits

10-8

1.5 1.6 1.7 1.8 1.9

Eb/N0, dB

Fig. 2. Probability of word error vs Eb/N 0 for Method F

2.0

51


